如何理解泊松分布和泊松过程

背景

阮一峰的博客讲到了如何理解泊松分布:http://www.ruanyifeng.com/blog/2013/01/poisson_distribution.html

本文根据其文继续讲讲。

泊松分布的由来

泊松分布由二项分布演进而来。二项分布十分好理解,给你n次机会抛硬币,硬币正面向上的概率为p,问在这n次机会中有k次(k

  在这n次抛硬币中,硬币朝上的次数的期望有多少?

  如果现在我能根据n的大小来控制p,从而控制这个期望,即无论n为多大,硬币朝上的次数的期望不变(恒为lambda):

那么当n趋于无穷的时候,P(K_heads)将趋于泊松分布,即:

  推到过程见(Introduction To Probability p307:https://www.dropbox.com/s/mrss8wg5yvmf7kw/Introduction%20to%20Probability.pdf)

所以,实验结果满足泊松分布的实验即为泊松过程。泊松过程把离散的伯努利过程变得连续化了:原来是抛n次硬币,现在变成了无穷多次抛硬币;原来某次抛硬币得到正面的概率是p,而现在p无限接近于0(p=lambda/n),即:非常难抛出正面朝上的硬币;但是n次实验中硬币朝上的次数的期望不变,即lambda恒定。在泊松过程中,我们把抛出硬币正面这样的事件叫做到达(Arrival)。把单位时间内到达的数量,叫做到达率(Arrival Rate)。

故,泊松过程需要满足以下三个性质:

1. 在任意单位时间长度内,到达率是稳定的。对应于无穷次抛硬币的例子,我们相当于把一个单位时间分割成了无穷次抛硬币的实验,每次实验产生正面的概率都是一样的(为lambda/n),而在这无穷个抛硬币实验之后(即一个单位时间之后)我们期望能抛出lambda个正面的硬币。这个性质类比于在有限次抛硬币(二次分布)的例子中保证了每次掷出硬币为正面的概率都为p。

2. 未来的实验结果与过去的实验结果无关。对应于无穷次抛硬币的例子,之前不管抛出了多少个正面和反面的硬币,都不会影响之后硬币出现的结果。

3. 在极小的一段时间内,有1次到达的概率非常小,没有到达的概率非常大。对应于无穷次抛硬币的例子,我们发现硬币朝上的概率p=lambda/n趋向于0。

判断一个过程是否为泊松过程

现在我们来讲讲阮一峰所举的枪击案的例子。这个例子给你了美国30年来每年的枪击案发生数目,需要解决的问题是能否从每年发生枪击案的数目判断美国枪击犯罪是否恶化。假设美国枪击案犯罪没有恶化,而是非常稳定,我们可以假设:枪击案的发生为泊松过程,每年平均发生枪击案的数目恒定(性质1),各个年份之间发生枪击案的数目不互相影响(性质2),任一时刻发生枪击案的概率很小(性质3),所以每年发生枪击案的数目服从泊松分布。

如何证明我们的假设是对的呢?如果枪击案的发生为泊松过程,我们可以从数据中算出到达率lambda(年平均发生枪击案数目)为2。因为在我们的假设下每年发生枪击案的数目服从泊松分布,那么一年内发生0起枪击案的概率为

一年内发生1起枪击案的概率为

  依此类推,那么我们可以得到一张我们假设出的年枪击案数目分布和实际枪击案发生数目的对照表:

  以及分布图:

再由一些统计学的计算方法(非本文重点,细节参见阮一峰原文),计算出我们假设的值与实际观测的值是否接近。如果接近,则说明我们的假设-枪击案发生为泊松过程-是正确的。

The Random Incidence Paradox

我们先来看看一个经典的Paradox:

上面的例子告诉了我们,假设一个事件的平均到达时间为T,你作为观察者多次介入该事件,并记录连续两个到达间隔的时间,你记录得到的平均到达时间会比T更长。你现在是在抽样“前后两次到达的间隔时间”,你介入该事件并开始记录是等概的,但你并不是等概地抽取不同到达间隔时间的样本:你更加有可能碰到两次到达间隔时间较长的情况,导致你最后的结果存在了BIAS。

那么现在也就更好理解下面的一个问题:

如果在一种BUS到达station为泊松过程,其到达率为lambda,即平均等待时间为1/lambda。你作为观察者在任意时间进入station,并多次记录前后到达时间的间隔(这里意为,你进入station时就可以立马知道前一次到达的时间,然后开始等待直到下一次到达并记录)。求问你记录的平均到达间隔时间为多少?

答案肯定是大于1/lambda的。假设你到达的时刻为t*,前一到达时刻为U,后一将要到达时刻为L,那么U至t*可以看做一段泊松过程,t*到L也可以看做一段泊松过程,所以你记录的平均到达间隔时间应该是两个泊松过程相加后的平均等待时间。多个泊松过程相加得到的是爱尔兰(Erlang)过程,期望为k/lambda。所以本题最后的答案是2/lambda。


相关内容

  • [随机过程]教学大纲

    <随机过程>课程教学大纲 课程编号:0806308033 课程名称:随机过程 英文名称:Stochastic Process 课程类型:专业限选课 总 学 时:32 讲课学时: 32 实验学时:0 学 分:2 适用对象:信息工程 ...


  • 浅析二项分布与泊松分布之间的关系

    学 年 论 文 题目: 浅析二项分布与泊松分布之间的关系 学 生: 学 号: 院 (系): 理学院 专 业: 信息与计算科学 指导教师: 安晓钢 2013 年11月25日 浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 ...


  • 随机变量可加性及在概率论与数理统计教学中的应用

    科技信息 ○本刊重稿○ SCIENCE&TECHNOLOGYINFORMATION2010年第23期 随机变量可加性及在概率论与数理统计 教学中的应用 屈聪张水利 (平顶山学院数学与信息科学学院河南 [摘 2 平顶山467000) ...


  • 泊松回归在生育率研究中的应用

    泊松回归在生育率研究中的应用 郭志刚 巫锡炜* [摘 要] 泊松回归是专门分析因变量为计数变量的回归模型.文章通过对 2001年全国计划生育/生殖健康调查数据的泊松回归分析来介绍其在生育率研究中 的应用.泊松回归除了可以接受虚拟编码方式的年 ...


  • MMN排队系统建模与仿真

    <系统仿真与matlab >综合试题 ...................... 错误!未定义书签. M/M/N 排队系统的模拟仿真 ........................................ 1 摘 要 ...


  • 复合泊松需求分布下生产企业的生产

    龙源期刊网 http://www.qikan.com.cn 复合泊松需求分布下生产企业的生产 作者:董作文 王建伟 来源:<经济研究导刊>2015年第12期 摘 要:针对需求到达次数为复合泊松过程的生产企业的生产--库存系统模型 ...


  • 专升本[随机过程]_试卷_答案

    专升本<随机过程> 一. (共54题,共153分) 1. 马尔科夫链存在平稳分布的前提条件是该马尔科夫链必须 (2分) A.平稳: B.遍历: C.各态历经 标准答案:B 2. 描述随机过程的数字特征包括自相关函数.方差函数.均 ...


  • [概率论与数理统计]笔记(考研特别版)

    <概率论与数理统计>笔记(考研版) 一.课程导读 "概率论与数理统计"是研究随机现象的规律性的一门学科 统计规律性 对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的:其实不然.人 ...


  • 泊松分布灰色理论在物流需求预测中的应用

    第29卷第4期 计算机仿真 2012年4月 文章编号:1006-9348(2012)04-0229-05 泊松分布灰色理论在物流需求预测中的应用 闫 1娟,李 萍 2 (1.河南师范大学网络中心,河南新乡453007: 2.郑州轻工业学院, ...