高中数学概念大全

第一部分 集合

(1)含n 个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

(2) 注意:讨论的时候不要遗忘了 的情况。

(3)

第二部分 函数与导数

1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;

⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法

3.复合函数的有关问题

(1)复合函数定义域求法:

① 若f(x)的定义域为〔a ,b 〕, 则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数 分解为基本函数:内函数 与外函数 ;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵ 是奇函数 ;

⑶ 是偶函数 ;

⑷奇函数 在原点有定义,则 ;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

6.函数的单调性

⑴单调性的定义:

① 在区间 上是增函数 当 时有 ;

② 在区间 上是减函数 当 时有 ;

⑵单调性的判定

1 定义法:

注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;

②导数法(见导数部分);

③复合函数法(见2 (2));

④图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性

(1)周期性的定义:

对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期

① ;② ;③ ;

④ ;⑤ ;

⑶函数周期的判定

①定义法(试值) ②图像法 ③公式法(利用(2)中结论)

⑷与周期有关的结论

① 或 的周期为 ;

② 的图象关于点 中心对称 周期为2 ;

③ 的图象关于直线 轴对称 周期为2 ;

④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;

8.基本初等函数的图像与性质

⑴幂函数: ( ;⑵指数函数: ;

⑶对数函数: ;⑷正弦函数: ;

⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;

⑻其它常用函数:

1 正比例函数: ;②反比例函数: ;特别的

2 函数 ;

9.二次函数:

⑴解析式:

①一般式: ;②顶点式: , 为顶点;

③零点式: 。

⑵二次函数问题解决需考虑的因素:

①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。

10.函数图象:

⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法

⑵图象变换:

1 平移变换:ⅰ ,2 ———“正左负右”

ⅱ ———“正上负下”;

3 伸缩变换:

ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;

ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;

4 对称变换:ⅰ ;ⅱ ;

ⅲ ; ⅳ ;

5 翻转变换:

ⅰ ———右不动,右向左翻( 在 左侧图象去掉);

ⅱ ———上不动,下向上翻(| |在 下面无图象);

11.函数图象(曲线)对称性的证明

(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;

注:

①曲线C1:f(x,y)=0关于点(a,b )的对称曲线C2方程为:f(2a-x,2b -y)=0;

②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;

③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

④f(a+x)=f(b-x) (x ∈R ) y=f(x)图像关于直线x= 对称;

特别地:f(a+x)=f(a-x) (x ∈R ) y=f(x)图像关于直线x=a对称;

⑤函数y=f(x-a) 与y=f(b-x) 的图像关于直线x= 对称;

12.函数零点的求法:

⑴直接法(求 的根);⑵图象法;⑶二分法.

13.导数

⑴导数定义:f(x)在点x0处的导数记作 ;

⑵常见函数的导数公式: ① ;② ;③ ;

④ ;⑤ ;⑥ ;⑦ ;

⑧ 。

⑶导数的四则运算法则:

⑷(理科)复合函数的导数:

⑸导数的应用:

①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?

②利用导数判断函数单调性:

ⅰ 是增函数;ⅱ 为减函数;

ⅲ 为常数;

③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。

④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分

⑴定积分的定义:

⑵定积分的性质:① ( 常数);

② ;

③ (其中 。

⑶微积分基本定理(牛顿—莱布尼兹公式):

⑷定积分的应用:①求曲边梯形的面积: ;

3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形

1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度

⑵弧长公式: ;扇形面积公式: 。

2.三角函数定义:角 中边上任意一点 为 ,设 则:

3.三角函数符号规律:一全正,二正弦,三两切,四余弦;

4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;

5.⑴ 对称轴: ;对称中心: ;

⑵ 对称轴: ;对称中心: ;

6.同角三角函数的基本关系: ;

7.两角和与差的正弦、余弦、正切公式:①

② ③ 。

8.二倍角公式:① ;

② ;③ 。

9.正、余弦定理:

⑴正弦定理: ( 是 外接圆直径 )

注:① ;② ;③ 。

⑵余弦定理: 等三个;注: 等三个。

10。几个公式:

⑴三角形面积公式: ;

⑵内切圆半径r= ;外接圆直径2R=

11.已知 时三角形解的个数的判定:

第四部分 立体几何

1.三视图与直观图:注:原图形与直观图面积之比为 。

2.表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S 侧= ;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S 侧= ;③体积:V= S底h :

⑶台体:①表面积:S=S侧+S上底S 下底;②侧面积:S 侧= ;③体积:V= (S+ )h ;

⑷球体:①表面积:S= ;②体积:V= 。

3.位置关系的证明(主要方法):

⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。

⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。

⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。

⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。

⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。

注:理科还可用向量法。

4. 求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)

⑴异面直线所成角的求法:

1 平移法:平移直线,2 构造三角形;

3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。

注:理科还可用向量法,转化为两直线方向向量的夹角。

⑵直线与平面所成的角:

①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin 。

注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。

⑶二面角的求法:

①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;

②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解; ③射影法:利用面积射影公式: , 其中 为平面角的大小;

注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;

理科还可用向量法,转化为两个班平面法向量的夹角。

5. 求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)

⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;

⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;

⑶点到平面的距离:

①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;

5 等体积法;

理科还可用向量法: 。

⑷球面距离:(步骤)

(Ⅰ)求线段AB 的长;(Ⅱ)求球心角∠AOB 的弧度数;(Ⅲ) 求劣弧AB 的长。

6.结论:

⑴从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;

⑵立平斜公式(最小角定理公式) :

⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S 侧cos =S底;

⑷长方体的性质

①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。

②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。

⑸正四面体的性质:设棱长为 ,则正四面体的:

1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;

第五部分 直线与圆

1.直线方程

⑴点斜式: ;⑵斜截式: ;⑶截距式: ;

⑷两点式: ;⑸一般式: ,(A ,B 不全为0)。

(直线的方向向量:( ,法向量(

2.求解线性规划问题的步骤是:

(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。

3.两条直线的位置关系:

4.直线系

5.几个公式

⑴设A (x1,y1)、B(x2,y2)、C (x3,y3),⊿ABC 的重心G :( );

⑵点P (x0,y0)到直线Ax+By+C=0的距离: ;

⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;

6.圆的方程:

⑴标准方程:① ;② 。

⑵一般方程: (

注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;

7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。

8.圆系:

⑴ ;

注:当 时表示两圆交线。

⑵ 。

9.点、直线与圆的位置关系:(主要掌握几何法)

⑴点与圆的位置关系:( 表示点到圆心的距离)

① 点在圆上;② 点在圆内;③ 点在圆外。

⑵直线与圆的位置关系:( 表示圆心到直线的距离)

① 相切;② 相交;③ 相离。

⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )

① 相离;② 外切;③ 相交;

④ 内切;⑤ 内含。

10.与圆有关的结论:

⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;

过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;

⑵以A(x1,y2) 、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。

第六部分 圆锥曲线

1.定义:⑴椭圆: ;

⑵双曲线: ;⑶抛物线:略

2.结论

⑴焦半径:①椭圆: (e 为离心率); (左“+”右“-”);

②抛物线:

⑵弦长公式:

注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p 。 ⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);

⑷椭圆中的结论:

①内接矩形最大面积 :2ab ;

②P ,Q 为椭圆上任意两点,且OP 0Q,则 ;

③椭圆焦点三角形:. ,( );.点 是 内心, 交 于点 ,则 ;

④当点 与椭圆短轴顶点重合时 最大;

⑸双曲线中的结论:

①双曲线 (a>0,b>0)的渐近线: ;

②共渐进线 的双曲线标准方程为 为参数, ≠0);

③双曲线焦点三角形:. ,( );.P 是双曲线 - =1(a>0,b >0) 的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;

④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;

(6)抛物线中的结论:

①抛物线y2=2px(p>0)的焦点弦AB 性质:. x1x2= ;y1y2=-p2;

. ;.以AB 为直径的圆与准线相切;.以AF (或BF )为直径的圆与 轴相切;. 。

②抛物线y2=2px(p>0)内结直角三角形OAB 的性质:

. ; . 恒过定点 ;

. 中点轨迹方程: ;. ,则 轨迹方程为: ;. 。

③抛物线y2=2px(p>0),对称轴上一定点 ,则:

.当 时,顶点到点A 距离最小,最小值为 ;.当 时,抛物线上有关于 轴对称的两点到点A 距离最小,最小值为 。

3.直线与圆锥曲线问题解法:

⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。

注意以下问题:

①联立的关于“ ”还是关于“ ”的一元二次方程?

②直线斜率不存在时考虑了吗?

③判别式验证了吗?

⑵设而不求(代点相减法):--------处理弦中点问题

步骤如下:①设点A(x1,y1) 、B(x2,y2);②作差得 ;③解决问题。

4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。

第七部分 平面向量

⑴设a=(x1,y1),b=(x2,y2),则: ① a ‖b(b≠0) a= b ( x1y2-x2y1=0;

② a ⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .

⑵a•b=|a||b|cos=x2+y1y2;

注:①|a|cos叫做a 在b 方向上的投影;|b|cos叫做b 在a 方向上的投影;

6 a•b的几何意义:a•b等于|a|与|b|在a 方向上的投影|b|cos的乘积。

⑶cos= ;

⑷三点共线的充要条件:P ,A ,B 三点共线 ;

附:(理科)P ,A ,B ,C 四点共面 。

第八部分 数列

1.定义:

⑴等差数列 ;

⑵等比数列

2.等差、等比数列性质

等差数列 等比数列

通项公式

前n 项和

性质 ①an=am+ (n-m)d, ①an=amqn-m;

②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq

③ 成AP ③ 成GP

④ 成AP, ④ 成GP,

等差数列特有性质:

1 项数为2n 时:S2n=n(an+an+1)=n(a1+a2n); ; ;

2 项数为2n-1时:S2n-1=(2n-1) ; ; ;

3 若 ;若 ;

若 。

3.数列通项的求法:

⑴分析法;⑵定义法(利用AP,GP 的定义);⑶公式法:累加法( ;

⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;

⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。

注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。

4.前 项和的求法:

⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。

5.等差数列前n 项和最值的求法:

⑴ ;⑵利用二次函数的图象与性质。

第九部分 不等式

1.均值不等式:

注意:①一正二定三相等;②变形, 。

2.绝对值不等式:

3.不等式的性质:

⑴ ;⑵ ;⑶ ;

;⑷ ; ;

;⑸ ;(6)

4.不等式等证明(主要)方法:

⑴比较法:作差或作比;⑵综合法;⑶分析法。

第十部分 复数

1.概念:

⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;

⑵z=a+bi是虚数 b≠0(a,b∈R) ;

⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2

⑷a+bi=c+di a=c且c=d(a,b,c,d∈R) ;

2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R) ,则:

(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd )+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;

3.几个重要的结论:

;⑶ ;⑷

⑸ 性质:T=4; ;

(6) 以3为周期,且 ; =0;

(7) 。

4.运算律:(1)

5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。

6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;

第十一部分 概率

1.事件的关系:

⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作 ;

⑵事件A 与事件B 相等:若 ,则事件A 与B 相等,记作A=B;

⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作 (或 );

⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作 (或 ) ;

⑸事件A 与事件B 互斥:若 为不可能事件( ),则事件A 与互斥;

(6)对立事件: 为不可能事件, 为必然事件,则A 与B 互为对立事件。

2.概率公式:

⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);

⑵古典概型: ;

⑶几何概型: ;

第十二部分 统计与统计案例

1.抽样方法

⑴简单随机抽样:一般地,设一个总体的个数为N ,通过逐个不放回的方法从中抽取一个容量为n 的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。

注:①每个个体被抽到的概率为 ;

②常用的简单随机抽样方法有:抽签法;随机数法。

⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的

规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。

注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;

④按预先制定的规则抽取样本。

⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。

注:每个部分所抽取的样本个体数=该部分个体数

2.总体特征数的估计:

⑴样本平均数 ;

⑵样本方差 ;

⑶样本标准差 = ;

3.相关系数(判定两个变量线性相关性):

注:⑴ >0时,变量 正相关;

⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。

4.回归分析中回归效果的判定:

⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。

注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;

② 越接近于1,,则回归效果越好。

5.独立性检验(分类变量关系):

随机变量 越大,说明两个分类变量,关系越强,反之,越弱。

第十四部分 常用逻辑用语与推理证明

1. 四种命题:

⑴原命题:若p 则q ; ⑵逆命题:若q 则p ;

⑶否命题:若 p 则 q ;⑷逆否命题:若 q 则 p

注:原命题与逆否命题等价;逆命题与否命题等价。

2.充要条件的判断:

(1)定义法----正、反方向推理;

(2)利用集合间的包含关系:例如:若 ,则A 是B 的充分条件或B 是A 的必要条件;若A=B,则A 是B 的充要条件;

3.逻辑连接词:

⑴且(and) :命题形式 p q; p q p q p q p

⑵或(or ):命题形式 p q; 真 真 真 真 假

⑶非(not ):命题形式 p . 真 假 假 真 假

假 真 假 真 真

假 假 假 假 真

4.全称量词与存在量词

⑴全称量词-------“所有的”、“任意一个”等,用 表示;

全称命题p : ;

全称命题p 的否定 p : 。

⑵存在量词--------“存在一个”、“至少有一个”等,用 表示;

特称命题p : ;

特称命题p 的否定 p : ;

第十五部分 推理与证明

1.推理:

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。 注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:

⑴大前提---------已知的一般结论;

⑵小前提---------所研究的特殊情况;

⑶结 论---------根据一般原理,对特殊情况得出的判断。

二.证明

⒈直接证明

⑴综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。

⑵分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。 附:数学归纳法(仅限理科)

一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:

⑴证明当 取第一个值 是命题成立;

⑵假设当 命题成立,证明当 时命题也成立。

那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。

这种证明方法叫数学归纳法。

注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;

3 的取值视题目而4 定,5 可能是1,6 也可能是2等。

第十六部分 理科选修部分

1. 排列、组合和二项式定理

⑴排列数公式: =n(n-1)(n-2)…(n-m +1)= (m≤n,m、n ∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;

⑵组合数公式: (m≤n), ;

⑶组合数性质: ;

⑷二项式定理:

①通项: ②注意二项式系数与系数的区别;

⑸二项式系数的性质:

①与首末两端等距离的二项式系数相等;②若n 为偶数,中间一项(第 +1项)二项式系数最大;若n 为奇数,中间两项(第 和 +1项)二项式系数最大;

(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。

2. 概率与统计

⑴随机变量的分布列:

①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;

②离散型随机变量:

X x1 X2 … xn …

P P1 P2 … Pn …

期望:EX = x1p1 + x2p2 + … + xnpn + … ;

方差:DX = ;

注: ;

③两点分布:

X 0 1 期望:EX =p ;方差:DX =p(1-p).

P 1-p p

4 超几何分布:

一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 其中, 。

称分布列

X 0 1 … m

P …

为超几何分布列, 称X 服从超几何分布。

⑤二项分布(独立重复试验):

若X ~B (n,p ), 则EX =np, DX=np (1- p); 注: 。

⑵条件概率:称 为在事件A 发生的条件下,事件B 发生的概率。

注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。

⑶独立事件同时发生的概率:P (AB )=P(A )P (B )。

⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;

(6)正态曲线的性质:

①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于直线x = 对称;

③曲线在x = 处达到峰值 ;④曲线与x 轴之间的面积为1;

5 当 一定时,6 曲线随 质的变化沿x 轴平移;

7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;

越小,曲线越“高瘦”,表示总体分布越分散。

注:P =0.6826;P =0.9544

P =0.9974

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B 是边a 和边c 的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S' 是直截面面积, L 是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]


相关内容

  • 高中数学公式大全!一.[集合与函数] 内容子交并补集,还

    高中数学公式大全!一.<集合与函数> 内容子交并补集,还有幂指对函数.性质奇偶与增减,观察图象最明显. 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓. 指数与对数函数,两者互为反函数.底数非1的正数,1两边增减 ...


  • 高中生家长评语大全

    如果单从作业看,你是很不错.可作业只是检查你课堂上学习情况,关键是你运用课堂上所学的知识解决问题的能力,这就是你为什么一碰到难题就无所下笔的原因.希望你能把课堂上所学的知识弄懂并融会贯通.(杨琳家长评,摘录) [老师点评:家长的眼光真敏锐, ...


  • 高中数学公式口诀大全

    高中数学公式口诀大全 一.<集合与函数> 内容子交并补集,还有幂指对函数.性质奇偶与增减,观察图象最明显. 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓. 指数与对数函数,两者互为反函数.底数非1的正数,1两边 ...


  • [蔓萝课堂] 中小学电子课本大全

    小学 语文 数学 英语 科学 音乐 体育 美术 信息技术 初中 语文 数学 英语 历史 地理 物理 音乐 体育 美术 化学 生物 日语 俄语 历史与社会 信息技术 高中 思想政治 语文 数学 英语 历史 地理 物理 化学 生物 日语 俄语 ...


  • 高中数学学习方法总结

    高中数学学习方法 四川省邻水二中:黄先明 数学是高考科目之一,故从初一开始就要认真地学习数学.进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈.出现这样的情况,原因很多.但主要是由于同学们不了解高中数学 ...


  • 学习方法:最好的初中物理学习方法大全

    本文集资料共4个分类:学习方法.记忆方法.快速阅读.潜能开发.每个分类都有多个资料,可在百度文库.新浪爱问共享.豆丁文库中直接搜索:"学习方法:""记忆方法:""快速阅读:"&qu ...


  • 高中数学教师工作总结范文

    以下是本站为大家整理的关于 高中数学教师工作总结范文的文章,希望大家能够喜欢! 2014年工作总结范文大全 年终工作总结 年度工作总结 个人工作总结 工作总结范文 工作总结报告 试用期工作总结 党支部工作总结 班主任工作总结 财务工作总结 ...


  • 初三数学圆知识点专题训练:圆的切线与垂径定理

    全国站 中考报考 中考备考 知识点库 试题大全 初中语文 初中数学 初中物理 初中化学 初中英语 重点高中 中考大事记 展开 中考报考 中考资讯中考政策中考体育中考分数线2016中考中考报名中招计划中考查分志愿填报教育动态中考大事记 中考备 ...


  • 引用范文大全

    [引用范文大全]引用芙蓉仙子的范文大全引用范文大全范文大全[总结报告]工作总结单位总结个人总结半年总结述职报告工作汇报调研报告工作计划实习报告考察报告工作报告总结月工作总结班主任总结工作总结年终总结工作总结个人总结半年工作2007上半年工作 ...